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ABSTRACT
Stress can lead to headaches and fatigue, precipitate addictive be-
haviors (e.g., smoking, alcohol and drug use), and lead to cardio-
vascular diseases and cancer. Continuous assessment of stress from
sensors can be used for timely delivery of a variety of interven-
tions to reduce or avoid stress. We investigate the feasibility of
continuous stress measurement via two field studies using wireless
physiological sensors — a four-week study with illicit drug users
(n = 40), and a one-week study with daily smokers and social
drinkers (n = 30). We find that 11+ hours/day of usable data can
be obtained in a 4-week study. Significant learning effect is ob-
served after the first week and data yield is seen to be increasing
over time even in the fourth week. We propose a framework to an-
alyze sensor data yield and find that losses in wireless channel is
negligible; the main hurdle in further improving data yield is the
attachment constraint. We show the feasibility of measuring stress
minutes preceding events of interest and observe the sensor-derived
stress to be rising prior to self-reported stress and smoking events.

Categories and Subject Descriptors
H.1.2. [Models and Principles]: User/Machine Systems

General Terms
Human Factors; Design; Measurement

Keywords
Mobile Health; Stress; Wireless Physiological Sensor

1. INTRODUCTION
Although low to moderate levels of stress can improve task per-

formance and contribute to skill development [24,50], repeated ex-
posure to acute stress can cause significant damage to physical and
mental well-being [32, 45]. Acute stress can lead to headaches,
trouble sleeping, and fatigue [6, 10, 12, 33]. Repeated stress can
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cause or worsen cardiovascular diseases and cancer [44,47]. Stress
can also precipitate adverse behaviors, such as depression, rage,
anxiety, and addiction [5, 14, 15, 20]. As a result, stress contributes
significantly to health care costs [38]. Even for healthy people,
stress can degrade quality of life by affecting mood and productiv-
ity.

Assessment of stress has traditionally relied on surveys and self-
reports. Real-time and continuous measurement of stress in daily
life can enhance stress awareness, and revolutionize stress research.
It can potentially lead to just-in-time intervention not only for stress
management but also to manage other conditions that are affected
by stress such as smoking, drinking, drug use, depression, mi-
graine, etc. Real-time measurement of stress is a very active area of
research. Researchers have developed a webcam-based method to
measure stress in confined work environments [48] and a microphone-
based method for use in unconstrained acoustic environment [29].
These approaches, however, do not lead to continuous measure-
ment of stress in daily life. For example, stress from acoustics can
only be inferred when people are conversing (25.6% of time [42]).

Physiological monitoring [19,22,40] is a promising approach for
continuous assessment of stress. Recent work has demonstrated
the feasibility of capturing physiological data in the natural envi-
ronment with real time wireless transmission to smart-phone1. In
2010, [18] reported an average of 23.7 hours per participant of con-
tinuous measurement in a mobile health (mHealth) study with 19
participants wearing a custom-made physiological sensor suite for
five days. They reported several issues that were major obstacles
for continuous physiological measurements — loss of wireless con-
nectivity, incorrect positioning of sensors on the body, and individ-
uals forgetting to fully charge the sensors, or accidentally turning
them off. In 2011, [40] reported an average of 24.8 hours per par-
ticipant of good quality data from 21 participants over two days.
Recently, [26] reported 45.6 hours per participant of physiological
data collected from 4 participants. Although the amount of data
collected per participant has been increasing, it is still not known
whether physiological data can be collected in the natural field set-
ting for a longer duration from a larger number of participants.

In this paper, we report our experiences from two user studies
(with 40 illicit drug users and 30 daily smokers), where 317 hours
of good quality electrocardiogram (ECG) data per participant has
been collected over 4 weeks of wearing wireless physiological sen-
sors. We analyze the data collected from these two studies to un-
derstand the feasibility and challenges for longer-term continuous

1We note that real-time wireless transmission of physiological data
on smart phone is critical to facilitating just-in-time interventions
(JITI) for stress management.
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stress assessment in the field. This study reveals several lessons for
future efforts on physiological monitoring in daily life. It also pro-
vides key implications for future stress research and the design of
just-in-time interventions for stress management.

First, we find that 11+ hours/day of usable data can now be ob-
tained in a 4-week study. Second, we observe a significant learning
effect after the first week, implying that one week may suffice for
most users to learn proper wearing of the physiological sensors by
themselves. Third, we observe that data yield continues to increase
over time even in the fourth week. This may imply that fatigue
stage is not reached in 4 weeks; longer studies may be feasible.

Fourth, we propose a framework to analyze sensor data yield and
find that losses in the wireless channel are negligible. Fifth, we find
that the yield from respiration sensor is higher than that for an elec-
trocardiogram sensor, perhaps due to a more stringent attachment
requirement; we lose at least 1.5 hours of ECG data per day due
to attachment issues. It implies that the main hurdle in further im-
proving data yield is the attachment constraint. Finally, we show
the feasibility of measuring stress in the minutes preceding events
of interest. We observe sensor-derived measure of stress to be ris-
ing prior to self-reported stress and smoking events.
Organization. We discuss related works in Section 2, data col-
lection procedure in Section 3, and our framework for data yield
analysis in Section 4. Section 5 describes how we infer stress from
physiological data. Section 6 presents key results, lessons learned,
and implications from our investigations. Section 7 describes limi-
tation and future works, and Section 8 concludes the paper.

2. RELATED WORKS
Several studies have demonstrated the feasibility of physical ac-

tivity monitoring [13, 41, 49] in daily life using accelerometers.
Physiological sensors, however, have more stringent skin attach-
ment requirements. Hence, data yield findings from accelerometer
studies are not directly applicable to those involving physiological
sensors.

Early systems such as Holter monitors enabled collection of phys-
iological data in the field with a bulky sensor suite [21]. To reduce
the burden, sensors were subsequently integrated into clothing in
products such as Lifeshirt [51], Smart Vest [37], Life Guard [35],
and Smart Shirt [17]. Wireless technology eased the burden fur-
ther by removing wiring. Wireless integration with mobile phones
made it possible to process sensor data in real-time on the mobile
phone, and prompt users to fix loose sensor attachments. Systems
using such technology include Alive Monitor [1], Zephyr BioHar-
ness [3], and several others (see [9] for a survey). The Alive Mon-
itor includes ECG and pulse oximeter sensing and has been used
successfully in several field deployments [25, 28]. The BioHarness
system includes ECG, respiration, and skin temperature and has
also been used successfully in the field [11]. Despite the recent
proliferation of wireless physiological sensors that wirelessly con-
nect to mobile phones, there has been surprisingly little work on
the analysis of the resultant data for continuous stress assessment.

Recent work has demonstrated the feasibility of capturing phys-
iological data in the natural environment with real time wireless
transmission to smart phones. However, long-term collection of
continuous physiological data using wearable wireless physiologi-
cal sensors in the free-living environment are rare as acknowledged
in recent literature [26]. Amount of data collected have ranged
from 23.7 hours per participant from 19 participants [18] and 24.8
hours per participant from 21 participants [40], to 45.6 hours per
participant from 4 participants [26]. In contrast, we report 317
hours per participant from 40 participants. Moreover, to the best
of our knowledge, no existing work has systematically analyzed

major factors that are responsible for data loss. Such an analysis
is critical to identifying major hurdles in improving the data yield
further. Finally, this is the first work to demonstrate the feasibility
of stress assessments in the minutes preceding self-reported stress
and addictive behaviors.

3. DATA COLLECTION
Two user studies were conducted to investigate the relationships

among stress, addictive behaviors, and their mediators (e.g., con-
versations, physical activity, and location), where these factors were
measured via wearable sensors, rather than via traditional self-reports.
Studies were conducted on 40 illicit drug users (Study 1) and 30
daily smokers and social drinkers (Study 2). Table 1 presents a
summary of the demographics of the study participants. Both stud-
ies were approved by Institutional Review Boards (IRBs). In the
following, we describe the devices and protocols used.

3.1 Devices and Sensor Measurements
Sensor Suite: During the study period, participants wore the Au-

toSense sensor suite underneath their clothes [16]. AutoSense con-
sists of an unobtrusive, flexible band worn around the chest. It
provides respiration data by measuring the expansion and contrac-
tion of the chest via inductive plethysmography (RIP) and includes
two-lead electrocardiograph (ECG), 3-axis accelerometer, temper-
ature (ambient and skin), and galvanic skin response (GSR) sen-
sors. Although we used a research platform (e.g., AutoSense) that
may not be as comfortable as commercial sensors such as Zephyr
BioHarness [3], we believe that our feasibility results should still be
applicable to studies that use commercial sensors. We chose Au-
toSense because it provides a significantly longer lifetime (7 days
vs. 3 days). The measurements collected by AutoSense are trans-
mitted wirelessly using ANT radio [2] to an Android smart phone.
The sampling rates for the sensors are 64 Hz for ECG, 21.33 Hz for
respiration, 10.67 Hz for each accelerometer axis and GSR, and 1
Hz for the two temperature sensors and the battery level. These
samples are transmitted at the rate of 28 packets/second, where
each packet is 8 bytes long and contains 5 samples.

Mobile Phone: Each participant also carried a smart phone. The
smart phone had four roles. First, it received and stored data trans-
mitted by the sensor suite. Second, it sampled and stored data from
the sensors built into the phone — GPS and accelerometers. Third,
participants used the phone to complete system-initiated self-reports.
Finally, participants reported the beginning of drinking and smok-
ing episodes by using a button on the smart phone.

3.2 Field Study Procedure
In both studies, participants were trained in the proper use of the

devices. They were shown how to remove the sensors before going
to bed and how to put them back on correctly the next morning.
They were also asked to take it off during shower and any contact
sport. Participants received an overview of the smart phone soft-
ware’s user interface, including the self-report interface. Once the
study coordinator felt that participants understood the technology,
they left the lab and went about their normal life. Participants were
asked to wear the sensors during their waking hours, complete self-
reported questionnaires when prompted, and record smoking and
drinking events.

Participants were asked to return to the lab daily. The study co-
ordinator downloaded the data collected in the previous day and re-
viewed the physiological measurements to ensure that sensors were
working and were being worn properly. On the final day, partici-
pants returned study equipment and completed an Equipment and
Experience Questionnaire. Lastly, participants were debriefed on
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Statistics Drug Daily
Users Smokers

# of Participants 40 30
# of Males 29 15
# of Females 11 15
# of Drop Outs 4 2
Age 41± 10 24.25± 6.25

Race
White 19 19
African-American 20 8
Asian 0 3
Refused 1 0

Educational High School Grad 40 0
Status University Grad 0 30
Employment Full Time 15 6
Status Part Time 10 14

Table 1: Demographics of participants in the two studies.

their experiences and comfort with the study.

3.3 Study Specific Information

3.3.1 Study 1: Illicit Drug Users
We recruited polydrug users from an ongoing study who agreed

to wear AutoSense and complete additional self-reports. Since drug
use is a rare event, we choose to conduct this study for four weeks
to maximize the likelihood of capturing real-life drug use events.

Compensation: Participants receive $10/day for wearing the Au-
toSense sensor suite (and $5 bonus for 14+ hours of wearing),
carrying the study phone, and completing device-prompted study
questionnaires consisting of 32 items. In total, participants are paid
up to $380 plus bonus (if any) for four weeks of participation.

Self-Report Measures: Participants were requested to voluntarily
record on the smart phone whenever they smoked a cigarette, used
any substance (e.g., cocaine, heroin or another opioid, marijuana,
benzodiazepines, or alcohol) outside of a medical context, or when-
ever they felt overwhelmed, anxious, or stressed more than usual.
Urine drug screens and retrospective drug use interviews occurred
3 times per week to verify drug use self-reports.

3.3.2 Study 2: Daily Smokers and Social Drinkers
We recruited “daily smokers” and “social drinkers” from the stu-

dent population at a large university (approximately 23,000 stu-
dents). We choose one week study duration for each participant to
cover all days of a week.

Compensation: Participants earned $35 for daily visits ($5/day);
and $75 for completing all end-of-study procedures and returning
all equipment. Completing a device prompted self-report question-
naire consisting of 42 items was worth $1. An additional $0.25
bonus was awarded if the questionnaire was completed within five
minutes. A maximum of 20 requests for self-reports occurred each
day. Thus, a participant could earn up to $20/day ($25 with bonus,
if any), adding up to $140 over seven days ($20 x 7). In total, par-
ticipants are paid up to $250 plus bonus (if any). Since wearing
physiological sensors and answering 42-items questionnaire more
than 13 times/day are highly burdensome, level of compensation
was derived from the prevailing wage in similar behavioral science
studies that involves wearing physiological sensors [36].

Self-Report Measures: In addition to completing system-initiated
self-reports, participants were requested to voluntarily log each in-
stance of smoking or drinking on the phone using touchscreen.

In this paper, we report data on the feasibility of stress assess-
ment preceding voluntarily reported events (e.g., stress, smoking,
drug use, and drinking alcohol).

4. DATA PROCESSING
In this section, we propose a framework (see Figure 1) to iden-

tify major factors that may be responsible for data loss when using
wireless physiological sensors. We also describe the computational
procedure we use to quantify their impact.

Study duration: It is the total number of days that participants
were active in the study. In Study 1, four weeks of data was col-
lected from 40 participants, for a total of 922 person days. In Study
2, we collected seven days of data from 30 participants, for a total
of 210 person days. We report the usable data (yield) and loss in
units of hours per person per day.

Figure 1: A hierarchical framework for analyzing data loss (and data
yield) for physiological data collected in the natural environment. We
used this framework to quantify the contribution of various factors in
data loss for both studies. We present them in Table 2.

Active/Inactive periods: Because participants were asked to re-
move the physiological sensors during sleep, the active period per
day refers to that part of the day when participants were awake
and available for wearing the sensors. We estimate active period
to be the period between the first and the last time of the day when
acceptable data from any of the physiological sensors (e.g., respira-
tion or ECG) was available. The remaining time of the day (outside
the active period) is labeled as inactive period. If participants took
the sensors off within the active period (e.g., to take shower), these
episodes also contributed to data loss since it occurred within the
active period.

Acceptability of ECG and respiration data: For both respira-
tion and ECG, signals are labeled as acceptable if they retain their
characteristic morphologies; and unacceptable otherwise. ECG sig-
nals are rendered unacceptable mostly due to improper or loose
contact of electrodes on body, electrode detachment, loosening of
electrical connectors, drying out of gel, or noise from physical
movement. Morphology of an acceptable ECG signal corresponds
to the standard ECG wave.

Respiration signals are largely affected by misplacement of the
chest band and slipping of the band from its expected location on
chest. Mere loosening of the chest band sometimes results in a
low amplitude signal, but that was considered acceptable if it still
retained the characteristic morphology of a respiration signal. Sig-
nal saturation to a point where variation is no longer detectable is
considered unacceptable. We adopt a method proposed in [39] for
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determining acceptability of ECG and respiration signals.
Phone on/off: Within the active period, the period in which the

study application was running on the study phone is considered as
phone on. When the application runs on the phone, it saves phone
sensor data even if the body sensors are off or out of radio range.
We did not inform participants how to stop the application when
the phone was on. But participants could always use the power
button on the phone to switch the phone off (which would also stop
the application). Time within the active period when the phone was
turned off, either intentionally or due to battery drainage, is referred
to as phone off.

Sensor on/off: Sensor on is defined as the period when the study
phone receives data from body sensors. Sensor off is defined as the
period when the study phone is on and the data acquisition appli-
cation is running, but no data is received from the body sensors for
more than one minute. We describe later how we distinguish sensor
off from the sensor’s being out of wireless range.

Sensor battery down: The wearable sensor suite transmits bat-
tery level data. A full charge of our battery is 4.1 volts, nominal
operation is 3.7 volts, and the minimum voltage needed for oper-
ation is 3 volts. When the battery level is close to 3 volts and the
application stops receiving data from the sensors, we define this
event as sensor battery down.

Sensor on-body/off-body: Sensor on-body is the time duration
when physiological sensors are attached to the participants’ body
and the phone receives data from the body sensors, even if the data
is of poor quality. When the sensors are off body, the data appears
saturated (i.e., showing negligible change over time [39]). Because
AutoSense has both respiration and ECG sensors, unsaturated data
from either of the sensors indicates that the sensor is on-body. Oth-
erwise, it is considered off-body if that time period is within the
active duration.

Attachment loss: Attachment loss refers to times when data
quality was unacceptable despite the sensors’ being attached to the
body. It is attributed to three factors:

Delay in attachment occurs when the sensors are being worn but
acceptable data from one of the sensors is delayed. Whenever the
participants wore the sensors, they were also instructed to visualize
the real time signal on the smart phone and fix the attachment, if
the signal looked unacceptable.

Intermittent loosening occurs when, after being acceptable for
some time, data quality becomes unacceptable intermittently (indi-
cated by restoration of data quality in the same wearing episode).
This may be due to movement, ECG electrode gel drying out, or
loosening of the electrode attachment or the chest band.

Improper attachment occurs when participants attach sensors im-
properly and do not fix the attachment for the entire wearing episode.

Loss due to jerks: When data quality becomes unacceptable
immediately after the onset of physical activity and again becomes
acceptable right after the end of the activity, we define this type of
data loss as a loss due to jerks.

Packet loss in the wireless channel: Packet loss (different from
disconnection) refers to the time duration when phone is wirelessly
connected to the body sensors but some data is lost through the
wireless communication channel. Packet loss could occur due to
the presence of obstacles between the lines of sight of the devices.
We recover lost data using interpolation when the signal retains
appropriate morphology even after interpolation. Otherwise, we do
not recover them and label these packets as lost packets.

Wireless Connection loss: During the active period, partici-
pants were instructed to carry the study phone to ensure that data
from the body sensors could be received on the phone in real-
time. A green icon (similar to the Wi-Fi icon) was displayed on

the application to inform participants about the status of the wire-
less connection. We logged each disconnection and reconnection
time stamp on the phone and use these time stamps to identify data
loss due to wireless disconnections, which can result from the fol-
lowing two factors:

Physical separation: Wireless disconnection can result if partici-
pants walk away from the phone while wearing the sensors, causing
the distance between the phone and sensors to exceed the allowable
wireless range. We attribute a connection loss to physical sepa-
ration, if physical movement (detected from accelerometer that is
sampled on both the wearable sensor suite and on the study phone)
is observed on the wearable sensors, but not on the study phone,
preceding the event of a connection loss.

Other factors: Wireless disconnection can also result from wire-
less interference or issues with the wireless radio software (on ei-
ther the sensor or the phone).

Physical Activity Detection: Physical activity episodes need to
be detected to exclude data from stress assessment. We adapted
a threshold based approach to physical movement detection pro-
posed in [8]. To train our model, we collected training data from
seven subjects during walking and running (354.16 minutes), and
stationary (1,426.50 minutes) states and then trained a model to dis-
tinguish physical movements from stationary states. Participants
wore the chest sensors and carried the phone, each of which has
a 3-axis accelerometer. The processing of signal includes filtering
of raw data and drift removal from the filtered data. Finally, we
computed a feature, i.e., standard deviation of magnitude, which
is independent of the orientation of the accelerometers [8]. In 10-
fold cross-validation test, our model provided 97% accuracy for
on-body sensor and 96% for phone in the pocket or purse.

Systematic Filtering of Physical Activity: We did not expect
(and instruct) our participants to avoid physical movement during
their daily activities as these activities are integral parts of the usual
daily life. But, it is well-known that physical activity activates
physiology and can easily confound the assessment of stress [40].
It was shown in [22] that the reliability of stress assessment reduces
significantly in the presence of physical activity, even in a lab en-
vironment. As a result, data affected by physical activity is usually
filtered out before applying a stress model on physiological data.

Figure 2: Threshold to detect physical activity. Standard deviation
of accelerometers magnitude greater than 0.21348 is labeled as non-
stationary (i.e., walking or running) and the others are labeled station-
ary. We find that daily smoker population was physically active for
16.83% (20% for drug users) when they were wearing our sensors.

We developed an admission control criterion for identifying episodes
of physical activity that may confound the assessment of stress to
automatically filter out unusable data. Figure 2 shows the threshold
for assessment of physical activity. Using this method, we find that
17% of ECG data is affected by activity in daily smokers (Study 2).
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5. STRESS INFERENCE FROM PHYSIOL-
OGICAL DATA

Stress estimation from ECG has traditionally relied on a single
feature (e.g., heart rate or heart rate variability (HRV), respiratory
sinus arrhythmia (RSA) [30, 31]. Machine learning models that
identify a more specific fingerprint of physiological activation be-
gan emerging in the past decade [19]. We use the stress model
in [40] since it has been validated in both the lab and the natural
field environment. This model provides a continuous measure of
stress that is normalized to be between 0 and 1.

This machine learning model predicts whether a one minute mea-
surement corresponds to a physiological response to a stressor. It
was trained and tested using physiological data from a 21 person
lab study where participants were carefully exposed to three diverse
and validated stressors (public speaking, mental arithmetic, and
cold pressor challenges) while physiological data and self-reports
were collected. This model can classify stress and non-stress min-
utes with 90% accuracy for 10-fold cross validation (92% accuracy
for 66%-34% split), and showed 0.72 correlation with self-reports.
Features used in the model included heart rate variability (HRV),
respiratory sinus arrhythmia (RSA), minute ventilation, and IE ra-
tio, among several others. To show the generalizability of the model
in field, the same 21 participants wore the sensors 12-14 hours
daily for 2 days in field and provided stress ratings 25 times/day
when prompted. It was found that the average rating produced by
the stress model had a correlation of 0.7 with the average rating of
self-reported stress [40]. We note, however, that although we use a
specific stress model for the analysis reported in this paper, our goal
here is to analyze the relative changes in stress level (section 6.4)
and hence it is not strongly dependent on a specific stress model.

6. RESULTS AND IMPLICATIONS

6.1 Overall Data Yield and Trends
We use the framework presented in Section 4 (see Figure 1) to

report the overall data yield and its characteristics. Table 2 lists the
quantity of data collected in the two studies. It also reports data
lost due to various factors defined in Section 4. We also report data
yield for ECG and respiration separately. Even though these two
sensors are hosted on the same sensor device and share the wire-
less radio, difference in their attachment requirements may explain
the difference in yield observed for these two sensors. Finally, the
amount of physiological data affected by physical activity is also
reported, since stress assessment may not be accurate during these
periods. This data set has produced several important observations
and results. In the following, we analyze in greater detail some of
the main results from which we can draw lessons and suggest impli-
cations for stress assessment in the natural environment to support
self-monitoring, self-management, or broadly health research.

6.2 Key Observations for Data Collection with
Wireless Physiological Sensors

6.2.1 Feasibility of Long-term Data Collection
We first observe from Table 2 that participants in Study 2 wore

the sensors for 10.45 hours, of which we get 7.87 hours of accept-
able data on ECG2, which is 75.3% yield. In Study 1, the yield is
85.7% (i.e., 11.33 hours of acceptable ECG data out of 13.22 hours
of sensors on-body). This represents a significant higher yield in

2We get an higher yield on respiration, but analyze ECG since it
has the lowest yield of all physiological sensors.

Factors Study 1 Study 2

Study Length (person days) 922 210
Active period 14.57±2.8 13.02±2.01
Phone off 0.78±0.23 2.2±0.31
Phone on 13.73±2.2 10.82±1.6
Sensor off 0.17±0.06 0.37±0.04
Sensor Battery Down 0.03±0.32 0.08±0.88
Sensor off Body 0.34±1.31 0.11±0.19
Sensor on Body 13.22±1.86 10.45±1.55
Packet Loss 0.27±0.01 0.18±0.04
Wireless Disconnection 0.04±0.01 0.15±0.01
ECG

Delay in Attachment 0.22±0.14 0.3±0.10
Intermittent Loosening 1.17±0.09 1.8±0.04
Improper Attachment 0.19±1.72 0.13±0.71
Acceptable Data 11.33±0.88 7.87±0.31
Activity 2.26±0.18 1.32±0.06
Usable 9.06±0.72 6.55±0.26

RIP
Delay in Attachment 0.12±0.1 0.05±0.06
Intermittent Loosening 0.72±0.05 0.17±0.01
Improper Attachment 0.20±0.63 0.1±0.51
Acceptable Data 11.84±0.52 9.83±0.55
Activity 2.36±0.11 1.66±0.10
Usable 9.47±0.42 8.18±0.47

Table 2: Overall physiological data yield statistics computed
from all person days of both studies using the hierarchical
framework proposed in Figure 1. Values (mean±std) are in
hours per participant per day. To show the subject variation,
standard deviation is added with each mean value.

Study 1. To understand this difference, we examine data yield from
Study 1 for each study week individually(as opposed to considering
the average of all four weeks).

Filled bars in Figure 3 present an average yield in each of the four
weeks of Study 1, and unfilled bar is the average yield in Week
1 of Study 2. We observe that the (78.9%) yield in Week 1 of
Study 1 is comparable to the (75.3%) yield in Week 1 of Study
2. Statistically significant improvement (from 78.9% to 84.3%) in
data yield occurs in Week 2. We thus hypothesize that one week of
participation may suffice to learn how to wear and maintain sensors
well. We summarize this finding below:

OBSERVATION 1. For physiological sensor wearing, a signifi-
cant learning effect is observed after Week 1.

We further observe that the improvement, though not statistically
significant, continues through all four weeks. This points to po-
tential feasibility of studies longer than four weeks that is reported
here. As mentioned in Section 1, the longest wearing episode for
physiological sensors reported previously was 45.6 hours / partic-
ipant. In Study 1, the yield is seen to be increasing (beyond 85%)
even after each participant wore the physiological sensors for 317
hours. We, therefore, propose the following hypothesis.

HYPOTHESIS 1. It may be feasible to obtain a good data yield
(e.g., 11+ hours/day) from wireless physiological sensors, even
when they are worn for four weeks or longer.

In the following, we discuss major factors that may explain or
improve data yield with wireless physiological sensors.
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Figure 3: Data yield (the ratio of acceptable to sensor on-body dura-
tion) for Week 1 in Study 2 (unfilled bar) and for all four weeks in Study
1 (filled bars). On average, data yield increased over time. The increase
observed from first week to second week in Study 1 is statistically sig-
nificant (paired t-test, p = 0.035).

Figure 4: Number of consecutive packets lost between two successive
packet arrivals with their relative contribution to overall lost samples.
Note that each packet contains only five samples.

6.2.2 Impact of Short Packets on Wireless Data Loss
There have been significant improvements in the design of low-

power wireless radios in recent years, making them a mature tech-
nology. For example, studies conducted few years ago [18] re-
ported 50% data loss due to various issues, including that due to
wireless radio. Similarly, [40] reported 30% losses. It was also
reported in [40] that the average length of consecutive valid data
was less than 4 minutes. The sensor suite in our study used ANT
radio, which is similar to the newly emerging low power Bluetooth
radio. In addition to various improvements in antenna design that
are better suited to the body, and higher energy efficiency, we dis-
cuss a specific design decision that decreased data loss in wireless
transmission in our studies.
Shorter packets: Figure 4 shows number of packets that were lost
between two successive packet arrivals. We observe that 82% of
the time, we lose only one packet in a burst and 10% of the time
we lose two packets subsequently. Figure 4 also depicts the con-
tribution of packet loss to the overall data. We note that the use of
short packets is quite advantageous for physiological sensors be-
cause each packet then constitutes only a small portion of ECG or
respiration cycle. Interpolating one, two, and three packets reduces
the overall data loss rate due to packet losses from 9.5% to 1.6%,
0.51%, and 0.25% respectively. We only interpolated one packet
that constitutes 8% of a cycle for both ECG and respiration using
Hermite interpolation (which did not adversely affect signal mor-
phology). As shown in Table 2, data lost due to packet losses or
wireless disconnection is less than 2.5% each, which is a signifi-
cant improvement over the previously reported studies.

We summarize this observation in the following.

OBSERVATION 2. Using short packets can limit data loss in
wireless transmissions.

6.2.3 Impact of Attachment Burden
A major hurdle in collecting physiological data in daily life over

long term is the stringent attachment requirement for these sensors.
We observe (Table 2) that in Study 2, we lose only 0.32 hours/day
of respiration sensor data as compared to 2.23 hours/day for ECG
sensor data. In Study 1 (Drug Users), we lose 1.04 hours/day of res-
piration data as compared to 1.58 hours/day of ECG data3. In both
studies the difference in the yield of two sensors can be attributed
to attachment losses. ECG is sensitive to proper attachment of the
gel electrodes to skin at an appropriate location, but for respiration
sensor, it suffices to wear a band around mid-chest. Respiration
sensor does not require skin contact and it can be worn with flex-
ible positioning of the band from the upper chest position to the
abdomen at the level of umbilicus [4] - making it more challenging
to wear and maintain ECG electrodes properly than the respiration
band. However, even respiration sensor band can become loose and
slip over the course of wearing for the entire day.

The major component of data loss from attachment constraints is
the one lost due to intermittent loosening. We analyzed the pattern
of this loss as the day progresses. We find that intermittent loosen-
ing increases as the day progresses (r = 0.8, p < 0.001) (see Fig-
ure 5). We believe that eliminating or reducing the attachment con-
straints for physiological sensing may significantly improve data
yield in the field environment. We note, however, that our findings
are specific to the ECG sensor used in our studies. Newer ECG
sensors such as patches or smart fabric electrodes may have lower
attachment issues, which can be investigated in future studies. We
summarize this effect in the following observation.

OBSERVATION 3. Attachment constraints is a major source of
data loss during everyday wearing of physiological sensors that
involve careful attachment.

Figure 5: Frequency of intermittent loosening throughout the day.
Red bold line is the least square regression for the incidents of intermit-
tent loosening (ECG) for drug users (Study 1) (r = 0.84, p < 0.001).
Blue dashed line is the regression line for daily smokers (Study 2)
(r = 0.8, p < 0.001). It shows that intermittent loosening increases
with the progression of the time of day for both population.

6.3 Implications for Stress-related Research
In this section, we discuss implications of this study on future

prospects of continuous stress assessment in the natural environ-
ment for stress research. It has also implications on self-monitoring
of stress because these types of systems have potential in assisting
3As explained earlier, the higher overall yield in ECG occurs in
Study 1 due to learning effect over four weeks.
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people in monitoring their health conditions. Although wearing the
chest band is burdensome for daily use, some users may be moti-
vated, perhaps due to a health condition (e.g., stress can aggravate
migraine attack), to use such systems even when there is no di-
rect monetary incentive. Wearable physiological sensors are also
becoming popular in the quantified-self community [43].

Here, we analyze how much overall physiological data is avail-
able daily for stress assessment, especially around events (or behav-
iors) of interest. We consider five events of interest, each of which
were self-reported by our participants as part of the study protocol.
In Study 1, the drug users reported smoking, drug use, craving, and
stress events while in Study 2, daily smokers and social drinkers
reported each smoking and drinking event. Table 3 shows overall
statistics of all types of voluntary self-reports collected.

Events # Self-reports Self-report/day

Study 1

Smoking (Cigarette) 2643 2.87
Craving for drug 302 0.33
Illicit Drug Use 142 0.15
Perceived Stress 108 0.12

Study 2 Smoking (Cigarette) 1520 7.24
Drinking (Alcohol) 144 0.68

Table 3: Statistics of voluntary self-reports in the field. Smok-
ing self-reports are frequent. Craving, drug use, drinking alco-
hol, and stress reports are less frequent.

We first analyze the availability of stress measurements preced-
ing events of interest since stress has long been known to play
a prominent role in precipitating several adverse behaviors, espe-
cially smoking. We then analyze how likely participants are to wear
the sensors when such events of interest occur.

6.3.1 Stress Assessment Preceding Events of Interest
Given that smoking is the largest cause of death [34], over $300

million are spent on smoking cessation research by US National In-
stitutes of Health alone. Decades of work in this area, all based on
self-reported stress data, found stress rising hours prior to a lapse
in addictive behaviors [46]. However, due to a lack of continuous
stress measurement, it has not been known what happens minutes
prior to a smoking lapse. Although our study did not assess stress
prior to a smoking lapse in abstinent smokers, it shows the feasibil-
ity of obtaining stress data in minutes prior to a smoking event.

Figure 6 shows the availability of stress assessment in minutes
preceding to a self-reported smoking, drinking, and drug craving
events. Data for self-reported stress and drug use are similar and
hence are omitted for brevity. We report these data in terms of
percentage of time (out of the active period per day). This helps
normalize these data across the two populations since the absolute
numbers are quite different in the two studies.

We observe that it is indeed feasible to obtain stress measurement
in each minute preceding an event of interest via self-reports. Up
to 65% of the data is available for stress assessment in the neigh-
borhood of the event even after excluding data affected by physical
activity. Availability of stress measurement data arbitrarily close
to the self-report opens up tremendous new opportunities to not
only study the role of stress in these adverse events with significant
health impact, but also opens up an opportunity to deliver interven-
tions upon detection of a rise in stress in real time (since stress data
are available on mobile phone).

We make several observations from our data. First, data avail-
ability in the minute preceding a self-report is higher than usual.
This may be due to enhanced consciousness of participants to check
sensor attachments prior to reporting an event. Second, we observe

that there is a higher level of activity preceding a smoking event
than usual. This may be due to walking out of buildings prior to
smoking. We still obtain over 55% usable data in each population.
Third, we observe that if the analysis is flexible in using best 3 out
of 5 preceding minutes, then the amount of data available for stress
increases to around 70%. We now summarize these observations.

OBSERVATION 4. It is now feasible to assess stress in the min-
utes preceding self-reported addictive behavior events.

6.3.2 Likelihood of Capturing Events of Interest
For self-reporting stress and drug use, participants used another

digital device that they were asked to carry with them at all times.
We use these two reports to estimate how likely the participants
are to be wearing the sensors (to enable stress assessment) when
these events of interest occur. We observe that on days when par-
ticipants reported a stress event, the average time of sensor wear-
ing is 11.96 hours/day as compared to 13.32 hours/day for those
days when these same participants did not report a stress event (two
tailed paired t-test, p < 0.001). Similarly, on the days when partic-
ipants reported a drug use event, the average time of wearing was
12.07 hours/day versus 13.43 hours from these same participants
on non-drug days (two tailed paired t-test, p < 0.001). We use
these observations to hypothesize that on days or times when par-
ticipants engage in unusual behavior (anticipated stress such as job
interviews or planned drug use), they are not as likely to wear the
sensors. Yet, there are sufficient instances of these events when it
is feasible to capture physiological data for stress assessment.

OBSERVATION 5. Participants wear fewer hours on days when
stress or drug events are reported.

6.4 Implications for Stress-related Just-in-time
Intervention

Now that it is feasible to obtain stress assessment in real-time on
mobile phone preceding events of interest, it has several implica-
tions for the design and delivery of just-in-time interventions (JITI).
In this section, we first present the pattern of stress observed pre-
ceding events of interest and draw implications on how they may
inform the design of JITIs. We then discuss how the measurement
of other contexts from sensors can be used in the design or delivery
of JITIs.
Stress Pattern: For smoking, stress, craving, and drinking, we use
the self-report from participants as the timing of these events. But,
for drug use, self-report is usually provided tens of minutes after
the use episode. Hence, self-report is not a reliable marker of the
timing of these events. Hence, we use a model we recently devel-
oped to detect the timing of illicit drug use from physiology [23].

Figure 7 shows the stress patterns observed preceding the events
of interest. We make several observations. First, we observe that
stress is seen to be rising in the minutes preceding a self-report
of stress. It also confirms that the stress model used here is sen-
sitive enough to capture the rise in self-reported stress. Second,
we observe that even though this study did not involve abstinent
smokers, stress levels preceding a smoking event is still higher than
usual4. Further, the stress level is elevated several minutes preced-
ing a smoking report. This is observed in both populations, which
may warrant further investigation by smoking researchers to under-
stand and explain the pattern. Stress level preceding other events
do not show such clear patterns. We summarize these observations
in the following.
4We note that activity affected data is not considered for stress as-
sessment and hence the rise on stress level is not a result of walking
episodes before a smoking event.
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Figure 6: In each group of 3 bars, 1st bar shows the fraction of physiological data available for stress assessment, 2nd bar shows what fraction
of data is affected by activity, and 3rd bar shows what fraction becomes unacceptable due to poor data quality. Vertical dashed line indicates the
relative time of self-reports. Bars before the vertical dashed lines present the availability of data for stress assessment in preceding individual minutes
-1 through -10. After the vertical line, best 2/3 means taking the average availability of two best previous minutes out of three, and best 3/5 means
taking the average availability of three best previous minutes out of five. Last group of bars in each figure represents overall minute by minute
availability of data for stress assessment. (a), (b) are for drug users (n = 40) and (c), (d) are for daily smokers (n = 30).

OBSERVATION 6. Elevated stress from sensors is observed prior
to a self-reported smoking or stress event, which can inform the de-
sign and delivery of just-in-time interventions.

Third, we observe a higher stress level among drug users than
student smokers. This may be due to lower socio-economic status
of drug users, as compared to students. Fourth, within each popula-
tion, stress is also highly variable across participants. There is also
wide within-person variability which is omitted for clarity of pre-
sentation. Finally, as the vertical bars show in these figures, there is
wide variability in the stress level. These observations suggest that
stress provides important information for triggering an interven-
tion to avert an adverse behavior. But, stress measurement may not
be sufficient by itself due to wide variability and additional strate-
gies should be employed to make such interventions more accurate.
They could include personalization of the models as well as use of
other contexts.
Incorporating other contexts to trigger just-in-time intervention:
To explore additional context that may be detectable from sensors
and can help predict an imminent adverse behavior, we analyze
the physical activity levels. In the case of smoking events, activity
pattern from both studies show a common pattern (Figure 6(a) and
(c)). Physical activity around the smoking self-reports for both the
cases is higher at times close to the self-reports. This is because
smokers usually smoke cigarette in a designated area. They walk
to or from the smoking spot around smoking session. Therefore, it
may be possible to use the detection of walking outside a building
to improve the prediction of a smoking event which may then be
used to trigger an intervention to avert a smoking lapse event.

7. LIMITATIONS AND FUTURE WORK
This work presents several findings that have implications for fu-

ture monitoring of stress in research as well as for personal health

and well-being. However, our work has several limitations that
could be addressed in future works.

Generalizability:Both studies were monitored or supervised by
professional staff. Participants had a training session where they
learnt about proper wearing of devices, which improved the data
yield over time (see Figure 3). It remains an open question whether
similar or better data yield can be obtained without daily meetings,
especially in the absence of micro-incentives to encourage compli-
ance with the protocol, such as when users voluntarily wear sen-
sors for self-monitoring. Nevertheless, this study provides a first
evidence of high data yield in a 4-week study.

Sensor Type: This study considered two physiological sensors
with specific attachment requirements. Again, it remains an open
question whether similar or better yield can be obtained for other
sensors that may have different attachment requirements (e.g., smart
patch, smart watch).

Temporal precision of self-report: Self-reports and actual events
may not always be synchronized. Participants may report an event
before, during, or after the actual occurrence. Hence, the stress lev-
els observed preceding self-reported events may not be temporally
precise. Automated detection of these events from sensors (e.g.,
traffic stressors from GPS, exam from calendar) will improve the
temporal precision of relating stress to the event of interest. These
methods are an active area of research and promise a future where
addictive behaviors such as smoking [7], drug use [23], and drink-
ing [27] may be detected accurately from sensors.

8. CONCLUSION
This work demonstrates the feasibility of collecting continuous

stress data from wireless physiological sensors in the natural en-
vironment for 4 weeks. Stress research that have been tradition-
ally limited to self-reports, can now be conducted with sensors and
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Figure 7: Stress level before self-reported stress (a), smoking (b), drug use (c), and drug craving (e) events in Study 1. Stress level before self-reported
smoking (d) and drinking (f) events in Study 2. Vertical dashed line shows the time of the event report, and horizontal bold line shows average daily
stress level. Figure (a) shows that the stress level in minutes preceding a voluntary self-report of stress event is higher than average daily stress. Also,
stress level in minutes preceding smoking is relatively higher than average daily stress.

provide tremendous visibility into stress dynamics around events
of interest. Similarly, interventions that have been limited to self-
initiation or pre-selected-time-based can now be triggered based on
real-time sensor data. Primary hurdle to further increasing the data
yield as well as duration of sensor wearing to several months is
the attachment constraints and burden associated with physiologi-
cal sensing. Development of contact-less sensors may enable the
next giant leap in physiological sensing.
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